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We present three accurate and efficient numerical schemes for solving the Falkner- 
Skan equation with positive or negative wall shear. Newton’s method is employed, 
with the aid of the variational equations, in all the schemes and yields quadratic con- 
vergence. First, ordinary shooting is used to solve for the case of positive wall shear. 
Then a nonlinear eigenvalue technique is introduced to solve the inverse problem in 
which the wall shear is prescribed and the pressure distribution is to be determined. 
With this approach the reverse flow solutions (i.e., negative wall shear) are obtained. 
Finally, a parallel shooting method is employed to reduce the sensitivity of the con- 
vergence of the iterations to the initial estimates. 

1. IN~ODU~TI~N 

Laminar boundary layers exhibiting similarity have long been the subject of 
numerous studies since they play an important role in illustrating the main physical 
features of boundary-layer phenomena. They also provide a basis for approximate 
methods of calculating more complex, nonsimilar flows. In the case of two- 
dimensional flows, when the external velocity at the edge of the boundary layer, 
U, , is of the form U, N zP/~-@, the equations of the incompressible laminar boun- 
dary layer become similar and can be reduced to 

f” + j.7” + B[l - (f’)2] = 0. (1) 
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The usual boundary conditions are 

f(O) = f’(O) = 0, W 

,liymf’Gjm) = 1. 
02 

Equation (1) is the well-known Falkner-Skan equation, which has provided many 
fruitful sources of information about the behavior of incompressible boundary 
layers. Its solutions have been extensively studied and reported in the literature 
for various values of 8. Most of these studies have concentrated on accelerating 
(fl > 0), constant (p = 0), and decelerating (/? < 0) flows ahead of the separation 
point (i.e., the point of zero wall shear). For all flows ahead of the separation point 
the wall shear, which is proportional to f”(O), is greater than zero. However, 
physically relevant solutions exist only for values of /3 in the range of 
-0.19884 < p < 2. Zero wall shear corresponds to p = -0.19884. Flows for 
which the wall shear is less than zero are called reverse flows and correspond to 
flows beyond the separation point. They were first obtained by Stewartson [I]. 
These solutions exist only for /3 in the range : -0.19884 < fl < 0. Thus there are 
two physically relevant solutions of (l), (2), in this latter p-range. 

Equations (1) and (2) form a third-order nonlinear two-point boundary value 
problem for which no closed-form solutions are known. Thus numerical methods 
are usually employed and of these the most popular is the shooting method. This 
consists in solving an initial-value problem for (1) in which one keeps f(0) and 
f’(0) fixed at their proper values (zero in this case) and tries various values of 
f”(0) in order to satisfy (2b). The systematic method by which new values of 
f”(0) are determined is one of the main features of this paper and it is found to be 
far better than the usual “cut-and-try” methods that have been applied [2]. In 
Fig. 1 solutions of the initial value problems are illustrated for values off”(O) in 
the neighborhood of the “exact” value required to satisfy f’(a) = 1. For p 
negative, it has been observed that solutions for all values off”(O), sufficiently near 
the correct one, meet the proper boundary conditions at infinity. However, the 
desired solution, as described in Ref. [2] and [3], is the one that approaches 
f’ = 1 most rapidly from below, as indicated in Fig. la. The other solutions for 
negative values of p have no apparent physical meaning. For /3 positive, solutions 
for all values off”(O) but the correct value diverge as shown in Fig. 1 b. 

The present paper utilizes the shooting methods as developed and described in 
[4]. For the simple shooting method the “cut-and-try” searching technique is 
replaced by Newton’s method. This generally provides quadratic convergence of 
the iterations and decreases the computation time. In Section 2 we describe this 
application to the Falkner-Skan equation for positive wall shear values. It is found 
that Newton’s method as we employ it automatically determines the physically 
relevant solution for negative @ values. 
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For reverse flows, with negative wall shear, we proceed in another way; solving 
what may be termed a nonlinear eigenvalue problem [4]. That is, we fixf”(0) to be 
the desired negative wall shear value and determine the appropriate value for p 
by iterations. This procedure is described in Section 3 and again Newton’s method 
is used in conjunction with the shooting method. Quadratic convergence was 
usually obtained. It should be noted that this type of approach also becomes impor- 
tant in problems (usually in nonsimilar flows) in which pressure distribution for a 
prescribed wall shear is to be found; i.e., so-called inverse problems. 
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FIG. 1. Typical solutions of the Falkner-Skan boundary-layer equation. 

One difficulty in both of the above applications is that the initial estimate of 
f”(0) or of p must occasionally be very close to the exact value in order for the 
method to converge. These difficulties can be largely eliminated by employing the 
parallel shooting method [4]. We illustrate this in Section 4 only for flows with 
f”(0) > 0. Newton’s method is now found to be extremely insensitive to the 
accuracy of the initial estimates and quadratic convergence is always observed. 

2. SIMPLE SHOOTING WITH NEWTON'S METHOD. POSITIVE WALL SHEAR 

We first replace (1) by a system of three first-order ordinary differential equations. 
If the unknowns f, f ‘, and f" are denoted byf, u, and u, respectively, the system of 
three first-order equations can be written as 

f’ = 24, (3) 
u’ = v, (4) 
u’ = -fv - /I(1 - U”). (5) 



292 CJZBECI AND KELLER 

In vector form this system can be written as 

where 
Y’ = g(Y), (6) 

(7) 

The boundary conditions given in (2) are replaced by 

f (0) = 0, u(0) = 0 @a) 

u(qcc) = 1. (8b) 

Here qm is some “sufficiently large” value which is easily determined in the cal- 
culations. It varies with p but this aspect of the problem will not be discussed 
further. We denote the value of wall shear, v(O), by 

u(0) = s. w 

The problem is to find s such that the solution of the initial value problem (6) and 
@a, c) satisfies the outer boundary condition (8b). That is, if we indicate the solution 
of this initial value problem by [f(~, s), ~(7, s), u(q, s)] then we seek s such that 

u(q, ) s) - 1 = $0(S) = 0. Pa> 

To solve (9a) we employ Newton’s method [5]. For some initial estimate so of the 
root this yields the iterates sy defined by 

dS”> _ +lm 9 s”) - 1 
sy+l = S” - [&&“),&] = S” - [au& , s”),as]. v = 0, 132 Y.... CW 

In order to obtain the derivative of u with respect to S, we take the derivatives of 
(6) (8a), and (8~) with respect to S. This leads to the following linear differential 
equations, known as the variational equations for (3), (4) and (5): 

F'= U, (10) 
U' = v, (11) 
V'= -fV-vF+2u/%J; 02) 

and to the initial conditions 

F(0) = 0, U(0) = 0, V(0) = 1. (13) 
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Here 

Once the initial-value problem given by (6), (8a), and (10) through (13) are 
solved, u(qm , P) and U(q, , sy) = au(v, , sV)/& are known and consequently the 
next approximation to u(O), namely, s “+l can be computed from (9b). We use a 
fourth-order Runge-Kutta method to solve the initial value problems. (More 
efficient schemes should be employed if possible but in practice we are at the mercy 
of our programmers). 

The above procedure was used to study flows for which wall shear was greater 
than or equal to zero. Calculations’ for various values of p with various initial 
estimates of so showed that the method is quite effective. 

The convergence properties of the iterations depend upon the value of /3 > 0, the 
initial estimates so must be more accurate as p increases and conversely for the 
decelerating flows, /3 < 0. For example, at fl = 0.5 the converged wall shear is 
v(O) = 0.92768. When so = 0.1, 0.2, 0.3, and 0.4 the iterations diverge while for 
so = 0.5 they converge. Similarly at /3 = 1.0 the correct wall shear is 
v(0) = 1.23259 and the values so < 0.8 lead to divergence while so = 0.9 yields 
convergence. Some details of the convergence rates are displayed in Table I. 
Obviously a good initial guess, so, for some value of p is obtained by employing 
the converged value, v(O), for a close value of fi. In this way we easily determined 
the “exact” solution given in [3] never using more than three iterations. 

TABLE I 

Some Iterations for Accelerating and Decelerating Flows 

Iteration No. p = 0.5 j=l p = -0.05 j3 = -0.10 
Y s” sv sv S” 

0 0.50000 0.9 0.10000 0.10000 

1 0.539332 1.697839 0.396211 0.355755 

2 0.623504 1.351750 0.400320 0.319287 

3 0.822382 1.244502 0.4003238 0.3192733 
4 0.923408 1.232734 - - 

5 0.927675 1.232590 - - 

6 0.927680 - - - 

1 All calculations were single-precision on an IMB 360/65. The convergence test was: 
1 s”+l - S” 1 < 10-n. 
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3. NONLINEAR EIGENVALUE PROBLEM. NEGATIVE WALL SHEAR 

To obtain the reverse flow solutions, we solve the system (6) (Sa), (8b), and (SC) 
as a “nonlinear eigenvalue” problem with /3 as the unknown parameter. That is, by 
(8~) the value u(0) of the wall shear is specified and we seek the appropriate value 
of /3, the pressure gradient parameter. To do this we again employ shooting 
techniques and Newton’s method. Specifically, we solve the initial value problem 
(6), (8a), and (8~) with v(O) = s fixed and seek to vary /3 so that (8b) is satisfied. 
That is, if we denote the solution of this initial value problem by [f(v, ,B), ~(7, /I), 
v(~, /3)], then we seek /3 such that 

u& ) p> - 1 = Y(P) = 0 (15) 

Newton’s method applied to this equation yields the iterates /P defined by 

Ifl(By) 4% 9 sy) - 1 
P,+l = p - [d!qP)/d/l] = B” - [&4(7), ) pyag] ’ v = 0,l ,.... (16) 

The derivative &@I is now obtained from the solution of the variational equations 

p’ = r, 

r’ = q, 

4’ = -fq 

subject to the initial conditions 

P(O) = 0, 

V-(1 -U2)+2/3ur, 

4(O) = 0, r(0) = 0, 

(17) 

(18) 

(1% 

(20) 

and the system (17)-(20) is obtained by differentiating (3)-(5), (8a) and (8~) with 
respect to p. 

Again, the fourth-order Runge-Kutta method is used to obtain the solution of 
the systems given by (6), (8a), (8c), and (17)-(20). The Newton iterates are then 
evaluated as in (16). This procedure has been applied with equal success to both 
nonseparating flows, u(0) > 0, and reverse flows, v(O) < 0. However, we discuss 
here only the results for reverse flows. As in the previous approach, convergence 
was obtained when the initial guess, /lo, was “reasonably” close to the correct value, 
/3*. Table II shows a comparison of reverse-flow solutions obtained by the present 
method and those obtained by Stewartson [l]. 
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TABLE II 

Comparison of Reverse-Flow Solutions 

Number of Fixed Initial Converged 
Iterations Parameter Estimate Value Stewartson 

Y 40) 8” B* PI 

5 0 -0.26 -0.198851 
4 -0.001 -0.26 -0.198826 
5 -0.04 -0.26 -0.196348 
5 -0.097 -0.26 -0.180552 
3 -0.097 -0.18 -0.180553 
3 -0.132 -0.16 -0.152118 
7 -0.132 -m0.26 -0.079596 
3 -0.141 -0.1 -0.101763 
2 -0.108 -0.05 -0.049745 
5 -0.097 -0.05 -0.040286 
2 -0.074 -0.025 -0.024789 
5 -0.04 -0.01 -0.009162 

- 

-0.18 
-0.15 

-0.1 
-0.05 

- 

-0.025 

Figure 2 presents a plot of the nondimensional velocity profiles for the reverse 
flows. The results show that as the singular point /I = 0, is approached, the 
magnitude of the reverse flow velocity decreases and the boundary-layer thickness 
increases. In the region very close to /3 = 0, it is difficult to obtain solutions. 

0 0.2 0.4 0.6 0.6 I.0 

/ LSEDARATION 

U 

FIG. 2. Dimensionless velocity profiles for reverse flows. 
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4. PARALLEL SHOOTING, POSITIVE WALL SHEAR 

The sensitivity to the initial guess of the simple shooting methods, described in 
Sections 2 and 3 can be reduced by using the parallel shooting method [4]. Accor- 
ding to this method, the total interval [0, ~~1 is divided into a number of sub- 
intervals, the appropriate initial-value problems are integrated over each 
subinterval, and then all of the “initial” data are adjusted simultaneously in order 
to satisfy the boundary conditions and appropriate continuity conditions at the 
subdivision points. 

In the present study, we have arbitrarily divided the total transformed boundary 
layer thickness q;4 into three2 subintervals: [0, $1, [$, ~“1, [$I, ~~1. Over each 
subinterval the system (6) is solved subject to the initial conditions 

(1) Y(O) = (8), Ul) Ye?‘) = (Z)> WIT Yh”) = ($ j. (22) 

We denote the solutions of (6) over the subintervals I, II, III by ~‘(7, s), 
yllh, al , bl ,4, and I”,, a 2 , b, , c2), respectively. Then we impose the con- 
tinuity conditions 

= y’+f, a, , b, , CA (234 

yfi(qrr, a, , bl , CJ = = yY$‘, a, , bz , c2), CW 

and the boundary condition (8b) which becomes 

(~“1)~ E u”‘(~,,, , a2 , b, , CJ = 1. (23~) 

This system of equations can also be written in vector form as 

-f'(7'. $1 - 01 

u'(q', ~1 - b, 

z"(7f, s) - Cl 

f"(rl", a, , b, > cl> - ~2 

u"(r)", a, , b, , 4 - b, 

d'($'. a,, b, , cd - ~2 

iu"'(vm, a2, b,, ~2) - 1 

(244 

2 The choice turned out to be quite satisfactory for the cases studied in this paper. 
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where, in transposed form, 

sT = (s, ~1, b, , cl , a2 , b, 3 ~2) W) 

The system (24a) has seven equations and seven unknowns. We solve this system 
by Newton’s method which now yields the iterates sy defined by: 

s”+l = S” - [qq-l cp(S”), v = 0, l,.... 

To find the Jacobian matrix [@cp/~s)(s”)], we solve the following variational 
systems: 

(I) 0 d 7 < 7’ 
F’=U Fl(O) = 0, 
U’ = v Ul(0) = 0, 
V' = -f'V - V'F + 2/3u'U V(O) = 1; 

(II) 7’ < 7 < 7” (26) F’=c - P(q’) = 1, P($) = 0, Fy7') = 0; 
u'=v U2(7') = 0, uyvf) = 1, v(T)') = 0; 
V' = -f"V - V"I: + 2/3u"U v-2(‘)‘) = 0, P(7)‘) = 0, v(q) = 1; 

(III) 7” < 7 < 7m 
F’=U 

II 

F5(7") = 1, F6(7") = 0, F'(7") = 0; 
U'= v U5(7p) = 0, V(7)“) = 1, U’(q”) = 0; 
V’ = -f”‘V - V”‘F + 2/?u”‘U V5(7”) = 0, V6(7”) = 0, V’(7”) = 1. 

For example, in the first subinterval we solve the system of equations by using the 
given initial conditions in that subinterval and obtain the solution F'(7), W(7), and 
V1(7). In the second subinterval, we solve the system of equations three times 
using the three sets of initial conditions with superscripts 2, 3, and 4. We denote 
these solutions by Fi(7), W(7), and Vj(7) with J = 2,3, and 4. Similarly, by solving 
the system of equations in the third subinterval using the three sets of initial 
conditions, 56, and 7 we obtain the solutions Fj(7), P(7), and Vj(7) withj = 5,6, 
and 7. Using these solutions, the Jacobian matrix can be shown to be [4] 

I 

P(7') - 1 0 0 0 0 0 
W7’) 0 -1 0 0 0 0 

hw’) _ W7’) 0 0 -1 0 0 0 
A(Y) E 

as= 
0 F2(7”) F3(7”) F4(7”) - 1 0 0 
0 U2(7”) U3(7”) U4(7”) 0 -1 0 
0 k-(7”) V3(7”) V4(7”) 0 0 -1 

LO 0 0 0 I U5(7m) W7.m) U’(7m) 

(27) 
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In terms of this matrix the Newton iterates (25) are determined by solving the 
simple linear system: 

A(“)(s v+l - sv) = -(p@). (28) 

In summary, our parallel shooting procedure proceeds by solving three initial 
value problems for (6) with initial data sy as in (22). Along with these we solve the 
seven linear variational problems (26) to evaluate A(“) from (27). Finally, svfl is 
determined from (28) and one iteration cycle is completed. 

Parallel shooting procedures were developed [4] to eliminate a shortcoming of 
simple shooting methods, frequently called “instability.” This phenomenon is 
caused by the fact that rapidly growing solutions of the initial value problems 
magnify various errors (truncation as well as roundoff). Incorrect guesses at the 
appropriate unknown initial data are effectively truncation errors. Thus it may be 
expected that parallel shooting will reduce the sensitivity of the convergence of 
iteration procedures (like Newton’s method) to the magnitude of the initial errors. 
This speculation was indeed borne out in the present calculations. Of course, the 
initial guess for parallel shooting is more complicated, in the present case requiring 
seven values rather than one. However, this additional complexity caused no 
difficulty and in the calculations presented below, we simply assumed a linear 
velocity profile from which all of the initial values (i.e., so) were obtained by an 
integration and a differentiation. Tables III, IV, and V present the results obtained 

TABLE III 

Comparison of Calculated Results with Those of Reference [3] 

P 
Parallel 

Shooting Ref. [3] 

-0.195 0.55177 0.055172 
-0.19 0.085702 0.085700 
-0.10 0.319278 0.319270 
-0.05 0.400330 0.400323 

0 0.469603 0.469600 
0.10 0.587037 0.587035 
0.20 0.686711 0.686708 
0.40 0.854423 0.854421 
0.60 1.120269 1.120268 
1.00 1.232561 1.232588 
1.20 1.335724 1.335772 
1.60 1.521516 1.521514 
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TABLE IV 

Convergence of v(O); Parallel Shooting 

Iteration No. p = 0.5 /3 = 1.0 p =: -0.05 
Y 40) 40) 40) 

0 0.167 0.167 0.167 
1 0.9445 2.23939 0.44785 
2 0.927396 1.422649 0.399251 
3 0.927683 1.243555 0.400330 
4 0.927682 1.232634 - 

5 - 1.232591 

TABLE V 

Convergence of s values for p = 0.5 

299 

Iteration 
No. v(O) 6, a2 h C2 

0 0.167 0.25 0.5 0.167 0.5 1.0 0.167 
1 0.9445 0.38951 0.698044 0.461947 2.302359 1.091020 0.083129 
2 0.927396 0.380950 0.680833 0.444003 2.195862 0.994259 0.014278 
3 0.927683 0.381092 0.681117 0.444287 2.197072 0.994964 0.014322 
4 0.927682 0.381092 0.681116 0.444286 2.197067 0.994862 0.014324 

in this manner. Table III gives a comparison of v(O)-values calculated by the parallel 
shooting method with those given in [3]. The agreement is very good and the 
disagreement which is in the sixth decimal place, is probably due to the round-off 
error since single precision arithmetic was used in the present calculation, In all 
these calculations the subintervals were arbitrarily taken as 0 < 71 < 1, 1 < 7 < 3 
and 3 < 7 < 6. The choice turned out to be satisfactory. When the subintervals 
were changed, almost identical results were obtained. 

Table IV indicates the convergence of the iterations for three /3 values. These 
results, as for all other /3 values studied by parallel shooting, show excellent 
convergence properties. A comparison of Tables I and IV shows that parallel 
shooting has much less sensitivity to the initial guess. 

A study was also made of the convergence of the components of sy other than 
s = v(O). Table V presents the results for j3 = 0.5. It is seen that the values of s 
other than u(0) all converge much faster than u(0) and this was typical. Note that 
for practical purposes convergence has occurred in the second iteration (i.e. three 
significant digits). 
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